Simultaneous measurement of nucleotide occupancy and mechanical displacement in myosin-V, a processive molecular motor.

نویسندگان

  • Tomotaka Komori
  • So Nishikawa
  • Takayuki Ariga
  • Atsuko Hikikoshi Iwane
  • Toshio Yanagida
چکیده

Adenosine triphosphate (ATP) turnover drives various processive molecular motors and adenosine diphosphate (ADP) release is a principal transition in this cycle. Biochemical and single molecule mechanical studies have led to a model in which a slow ADP release step contributes to the processivity of myosin-V. To test the relationship between force generation and ADP release, we utilized optical trapping nanometry and single molecule total internal reflection fluorescence imaging for simultaneous and direct observation of both processes in myosin-V. We found that ADP was released 69 +/- 5.3 ms after force generation and displacement of actin, providing direct evidence for slow ADP release. As proposed by several previous studies, this slow ADP release probably ensures processivity by prolonging the strong actomyosin state in the ATP turnover cycle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Holding the reins on myosin V.

M yosins comprise a diverse family of molecular motor enzymes that use the energy from cycles of ATP binding, hydrolysis, and product release to perform mechanical work along actin filaments. Although all characterized myosins share a conserved catalytic motor domain, referred to as ‘‘head,’’ variations in enzymatic and structural properties allow different myosins to generate diverse types of ...

متن کامل

How myosin VI coordinates its heads during processive movement.

A processive molecular motor must coordinate the enzymatic state of its two catalytic domains in order to prevent premature detachment from its track. For myosin V, internal strain produced when both heads of are attached to an actin track prevents completion of the lever arm swing of the lead head and blocks ADP release. However, this mechanism cannot work for myosin VI, since its lever arm po...

متن کامل

A model of myosin V processivity.

Cytoplasmic transport is mediated by a group of molecular motors that typically work in isolation, under conditions where they must move their cargos long distances without dissociating from their tracks. This processive behavior requires specific adaptations of motor enzymology to meet these unique physiologic demands. One of these involves the ability of the two heads of a processive motor to...

متن کامل

Insights into the mechanisms of myosin and kinesin molecular motors from the single-molecule unbinding force measurements.

In cells, ATP (adenosine triphosphate)-driven motor proteins, both cytoskeletal and nucleic acid-based, operate on their corresponding 'tracks', that is, actin, microtubules or nucleic acids, by converting the chemical energy of ATP hydrolysis into mechanical work. During each mechanochemical cycle, a motor proceeds via several nucleotide states, characterized by different affinities for the 't...

متن کامل

The structural basis of myosin V processive movement as revealed by electron cryomicroscopy.

The processive motor myosin V has a relatively high affinity for actin in the presence of ATP and, thus, offers the unique opportunity to visualize some of the weaker, hitherto inaccessible, actin bound states of the ATPase cycle. Here, electron cryomicroscopy together with computer-based docking of crystal structures into three-dimensional (3D) reconstructions provide the atomic models of myos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 96 1  شماره 

صفحات  -

تاریخ انتشار 2009